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Abstract
We study a fluid of nematogenic molecules with centres of mass constrained
to lie in a plane but with axes free to rotate in any direction. An external
disorienting field perpendicular to the plane along with a second orienting
field in the plane induce an in-plane order–disorder transition. We analyse the
behaviour of this simple biaxial model using a well-established generalization
of molecular integral equation methods built upon specially tailored basis
functions that maintain orthogonality in the presence of anisotropy. Computer
simulation and integral equation calculations predict an isotropic–nematic
transition at low temperatures in zero field and an in-plane transition at
somewhat higher temperatures in the presence of the disorienting field. The
oriented states obtained in the presence of both fields can subsequently be
used as input to uncover in detail first the transition in the absence of the in-
plane orienting field and finally the spontaneous transition in the absence of
any field. According to the simulation, the transition apparently belongs to
the Berezinskii–Kosterlitz–Thouless defect-mediated type, whereas the theory
reproduces a weak first-order transition.

1. Introduction

Axial molecules that interact through a pair potential that favours parallel alignment of their
axes will, at sufficiently low temperature or high density, spontaneously go over from an
isotropic to an orientationally ordered nematic state. This is a uniaxial state, with a preferred
nematic direction indicated by a director n̂. In the absence of an external orienting field,
however, n̂ itself may be in any direction and hence a calculated one-body orientational
distribution function f (ω) will still average to a constant. If now an external wall or other
disorienting external field W0 is brought in that tends to align the molecular axes perpendicular
to this field, then the isotropic–nematic transition when it occurs will produce an orientationally
ordered state having two relevant directions, those of W0 and n̂. Again, in the absence of an
external ordering field, n̂ in this biaxial system may still be in any direction perpendicular to
W0, and so the calculated f (ω) will describe only a uniaxial system. To bring out the full
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biaxial nature of this system a second, orienting external field—call it A0—perpendicular to
W0 must be turned on. Once A0 has established a unique direction for n̂, this second field
may be turned off at some sufficiently low temperature and, with density fixed, the system
will remain in the same ordered state as the temperature is raised until a limiting transition
temperature is reached when it will revert to a disordered uniaxial state (i.e., with molecular
axes on average perpendicular to W0 but isotropic in that plane). Further, if both A0 and W0 are
turned off at some ordered low-temperature state, then the field-free system will again remain
in the ordered state as the temperature is raised until the order–disorder transition occurs, but
now at a lower transition temperature than in the presence of the disorienting field W0.

At first sight, one might think it difficult to find a physical interpretation to the disorienting
field as introduced above. However, this is actually the simplest model that can account for
the physical properties of certain polar molecules in which the dipole moment does not lie
along the main symmetry axis, such as para-azoxy-anisole (PAA) [1]. In this instance, the
disorienting field accounts for the effect of an external electric field that, acting on the dipole
moment, would tend to orient the molecular axis in a direction perpendicular to the field
itself. (In the particular case of PAA the angle is actually 62◦ rather than 90◦.) It also
might give a rough representation of complex interactions such as those appearing in para-
dimethylbenzene near the liquid–vapour interface, where it has been found that the surface
effects induce the formation of a planar nematic phase on the interface [2]. Obviously, no
physical interpretation of the second disorienting field, A0, is needed, since this is just an
auxiliary magnitude introduced so as to define a privileged direction when A0 → 0 and thus
correctly account for the spontaneously broken symmetry, following the idea of Bogoliubov’s
quasiaverages [3].

A simple biaxial model exhibiting these properties was recently proposed and studied by
Sokolovska, Sokolovskii, and Holovko in three dimensions, with the system in the presence
of both an infinite [4] and a finite [5] disorienting field W0. The interparticle potential used
by these authors corresponds to the Maier–Saupe model for nematogens [6], whose lattice
version is known as the Lebwohl–Lasher model [7]. In [4, 5], Sokolovska and co-workers
used the anisotropic Ornstein–Zernike equation [8, 9] for the two-body distribution functions
along with the exact Lovett–Mou–Buff–Wertheim relation [10, 11] to couple the one-body and
two-body functions. A tour de force analytic solution using the mean spherical approximation
(MSA) for the needed closure relation allowed them to draw broad conclusions regarding the
model’s properties, including the transition temperature effect noted above. More recently, the
present authors [12] applied the same model interactions to a nematic system with molecular
centres constrained to lie in a plane (i.e., a continuous version of the RP2 lattice model studied
by Kunz and Zumbach [13]), with W0 perpendicular to this plane. That study also used
the anisotropic Ornstein–Zernike equation and a different but also exact relation between
the one-body and two-body distribution functions: the first member of the Kirkwood–Born–
Green–Yvon (KBGY) hierarchy [8]. The approximate closure relation used was the reference
hypernetted chain (RHNC) equation [14] and the calculations were performed numerically.
(We note that no analytic solution for the MSA is known in two dimensions.) Since the external
field destroys the orthogonality of the usual spherical harmonics used in such molecular
calculations, a key ingredient of the numerical algorithm was the explicit construction of
tailored Legendre functions Plm(cos θ) that maintain orthogonality in the presence of the field
W0. This approach has been successfully used to describe the ferromagnetic transition in bulk
Heisenberg spin fluids [15, 16] as well as the behaviour of a planar dipolar system [17], both
in external magnetic fields.

In this paper we extend the two-dimensional calculation of [12] (and partially amend it—
the unfortunate use of reduced quantities in the very formulation of this earlier calculation led
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us to inadvertently neglect the temperature dependence in the Boltzmann factor of the external
field) by explicitly introducing the second,orienting external field A0 in the plane of the system.
Following the same prescription as above for the new anisotropy, we build tailored exponential
functions Em(cos φ) that maintain orthogonality in the presence of the field A0. The overall
construction thus yields generalized spherical harmonics Ylm(ω) that allow the numerical
solution of the integral equation for the biaxial case to proceed with no more complication
than that of an isotropic molecular system. As in [12], we use the RHNC closure, which
is known to produce relatively accurate results. Having calculated solutions for the biaxially
ordered system (W0 �= 0, A0 �= 0) at low temperatures, we find however that the RHNC closure
is not suited for the program described earlier: if the field A0 is now turned off, RHNC does not
uncover the spontaneous phase transitions expected but rather produces no converged solution
at all. Since the MSA is known to have such solutions in three dimensions [4, 5], we turn to
a demonstration-of-principle calculation by solving the MSA numerically in two dimensions,
using the same algorithm as for RHNC. The expected behaviour is then indeed found. With
A0 = 0 and starting from an ordered solution at low temperature, nematic–isotropic transitions
are seen as the temperature is raised, with the transition temperature in the presence of the
disorienting field W0 higher than that of the field-free case. Where comparisons with Monte
Carlo (MC) simulations are possible, we find that the MSA closure exacts for this performance
a price in accuracy.

One must bear in mind, however, that the ordered states exhibited by this system
when A0 = 0—as the simulation will show and as has also been found in lattice model
calculations [13, 18]—are of the Berezinskii–Kosterlitz–Thouless (BKT) type [19, 20], i.e.,
lack proper long-range order, whereas by construction the type of integral equation we use
here leads to truly ordered states giving rise to first-order or second-order transitions depending
on the magnitude of the disorienting field [4]. This discrepancy as regards the nature of the
transition will certainly condition the comparisons between theory and simulation, but we will
see that the theory even at the simple MSA level is still able to capture important features of
the order–disorder transition.

2. Crossed external fields

The total potential energy U of the N-molecule system in a given configuration is

U =
∑

j

uz(ω j ) +
∑

j

ux(ω j ) +
∑

i< j

uHS(ri j) +
∑

i< j

u(ri j , ωi , ω j ), (1)

where ω = (θ, φ) gives the orientation of a molecular nematic axis, which is free to rotate
in three dimensions, referred to the z axis perpendicular to the system plane of area A. The
energies here are the external disorienting potential in the z direction,

uz(ω) = W0 P2(cos θ), with W0 � 0, (2)

which tends to rotate the molecular axes into the xy system plane, the external orienting
potential,

ux(ω) = −A0T2(cos φ), with A0 � 0, (3)

which tends to align the molecular axes along an in-plane direction (denoted as the x axis), the
hard sphere potential, uHS(r), for spheres of diameter σ , and an attractive potential between a
pair of molecules that tends to align their mutual nematic axes,

u(r, ω1, ω2) = −K u0(r)P2(cos θ12), with K > 0, (4)

u0(r) = e−κ(r−σ )

r/σ
, for r > σ. (5)
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In these expressions, P2(x) = (3x2 − 1)/2 is the Legendre polynomial of order two and
T2(x) = 2x2 − 1 the Chebyshev polynomial of order two, while θ12 is the angle between the
axes of molecules 1 and 2 and κ is a range parameter.

In the calculation, the dimensionless inverse coupling strength (βK )−1 = kBT/K ≡ T ∗,
where T is the absolute temperature and kB is Boltzmann’s constant, will serve to define the
reduced temperature T ∗. The total potential energy in units of kBT is then

U

kBT
= 1

T ∗

[
W0

K

∑

j

P2(cos θ j) − A0

K

∑

j

T2(cos φ j) −
∑

i< j

u0(ri j )P2(cos θi j)

]

+
∑

i< j

βuHS(ri j). (6)

We introduce the one-body distribution functions for noninteracting molecules in the external
fields, f0z(cos θ) and f0x(cos φ), by factoring the canonical partition function

Z = 1

N!(4π�2)N

∫ N∏

j=1

(dr j dω j )e
−βU (7)

into an ideal part and the excess, Z = Z id Z ex, where

Z id = 1

N!(4π�2)N

∫ N∏

j=1

(dr j dω j) exp

(
−β

∑

j

[
uz(ω j) + ux(ω j )

]
)

= 1

N!

(
A

�2

erf
[
(3βW0/2)1/2

]
eβW0/2

2(3βW0/2π)1/2
I0(β A0)

)N

, (8)

and so

Z ex = 1

(4π A)N

∫ N∏

j=1

[dr j dω j f0(ω j)] exp

(
−β

∑

i< j

[
uHS(ri j ) + u(ri j , ωi , ω j )

]
)

. (9)

Here we have put f0(ω) ≡ f0z(cos θ) f0x (cos φ), with

f0z(cos θ) = 2(3βW0/2π)1/2

erf
[
(3βW0/2)1/2

] exp

(
−3

2
βW0 cos2 θ

)
, (10)

f0x (cos φ) = exp(β A0 cos 2φ)

I0(β A0)
, (11)

where erf(x) is the error function and I0(x) the modified Bessel function of order zero. We
have further conventionally introduced above the de Broglie thermal wavelength � for the
normalization of Z . The distribution function f0(ω) is normalized so that

1

4π

∫
dω f0(ω) = 1, (12)

or individually,

1
2

∫ π

0
dθ sin θ f0z(cos θ) = 1, (13)

1

2π

∫ 2π

0
dφ f0x (cos φ) = 1. (14)
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3. Formulation of the integral equations

3.1. One-body and two-body distribution functions

With the molecules subject to both one-body and two-body interactions,a statistical description
of the system requires both the one-body and two-body density functions,

ρ(1)(r, ω) =
〈

N∑

j=1

δ(r − r j)δ(ω − ω j )

〉
= ρ

4π
f (ω), (15)

ρ(2)(r, ω, r′, ω′) =
〈
∑

i �= j

δ(r − ri)δ(ω − ωi )δ(r
′ − r j )δ(ω

′ − ω j )

〉

= ρ2

(4π)2
f (ω) f (ω′)g(|r − r′|, ω, ω′), (16)

where ρ = N/A is the planar density and f (ω) the one-body angular distribution function in the
interacting fluid. Equation (16) defines the generalized pair distribution function g(r, ω, ω′) of
the anisotropic system. The angular brackets in these definitions denote a canonical ensemble
average with the potential of equation (1).

The basic equations that determine the distribution functions f (ω) and g(r, ω, ω′) are
well known [8, 9]. The one-body density can be differentiated with respect to θ to give

d

dθ1
ln

[
f (ω1)

f0(ω1)

]
= − ρ

4π

∫
dr2 dω2 f (ω2)g(r12, ω1, ω2)

d

dθ1
βu(r12, ω1, ω2), (17)

which will determine fz(cos θ), and with respect to φ to give

d

dφ1
ln

[
f (ω1)

f0(ω1)

]
= − ρ

4π

∫
dr2 dω2 f (ω2)g(r12, ω1, ω2)

d

dφ1
βu(r12, ω1, ω2), (18)

which will determine fx(cos φ). These are first-order members of the KBGY hierarchy.
Calculation of f (ω) = fz(cos θ) fx(cos φ) from these equations requires knowing g(r, ω1, ω2).
In classical liquid state theory, the pair distribution function is obtained from the Ornstein–
Zernike (OZ) equation and a closure relation [8, 9]. The first of these, generalized for
anisotropy, reads

γ (r12, ω1, ω2) = ρ

4π

∫
dr3 dω3 f (ω3)[γ (r13, ω1, ω3) + c(r13, ω1, ω3)]c(r32, ω3, ω2) (19)

for the indirect correlation function γ = g − 1 − c, where c(r, ω1, ω2) is the direct correlation
function. The second, or closure, relation expresses c(r, ω1, ω2) back in terms of γ (r, ω1, ω2)

and the model’s pair interactions,

c(r, ω1, ω2) = exp[−βuHS(r) − βu(r, ω1, ω2) + γ (r, ω1, ω2)

+ b(r, ω1, ω2)] − 1 − γ (r, ω1, ω2). (20)

This relation must be supplemented with an approximation for b(r, ω1, ω2), the so-called
bridge function, which is formally defined in terms of a diagram summation [8] that offers little
practical benefit. Most approximate closures for c(r, ω1, ω2) define b(r, ω1, ω2) implicitly.

3.2. Generalized spherical harmonics

The usual spherical harmonic expansion for a pair function, say g(r, ω1, ω2), may be written
as
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g(r, ω1, ω2) = 4π
∑

l1,l2 ,m1,m2

Gm1m2
l1l2

(r)Yl1m1(ω1)Yl2m̄2(ω2)

=
∑

l1,l2 ,m1,m2

(−1)m1 Gm1m2
l1l2

(r)P̂l1m1(cos θ1)P̂l2m2(cos θ2)

× Em1(cos φ1)E∗
m2

(cos φ2), (21)

where m̄ ≡ −m, asterisk denotes complex conjugate, and

Em(cos φ) ≡ eimφ

= Tm(cos φ) + iVm(cos φ). (22)

Here Tm(cos φ) = cos mφ is the Chebyshev polynomial of order m and Vm(cos φ) = sin mφ

the associated Chebyshev function of order m. In the second equality of equation (21), we are
using Legendre functions P̂lm(x) that are normalized such that

1
2

∫ π

0
dθ sin θ P̂lm(cos θ)P̂l′m(cos θ) = δll′ . (23)

The exponential functions Em(cos φ) of course have the normalization

1

2π

∫ 2π

0
dφ Em(cos φ)E∗

m′(cos φ) = δmm′ (24)

for m, m ′ positive or negative. We write the expansion coefficients in equation (21) in upper
case, G, to distinguish them from the distinct set of coefficients written in lower case, g, to be
introduced next.

The external fields along the z and x axes produce nonuniform distributions fz(cos θ) and
fx(cos φ) that destroy the orthogonality of the Legendre functions and exponential functions,
respectively. To recover orthogonality and work conveniently within these external fields, we
generalize equation (21) to read

g(r, ω1, ω2) = 4π
∑

l1,l2 ,m1,m2

gm1m2
l1l2

(r)Yl1m1(ω1)Yl2 m̄2(ω2)

=
∑

l1,l2 ,m1,m2

(−1)m1 gm1m2
l1l2

(r)Pl1 m1(cos θ1)Pl2 m2(cos θ2)

× Em1(cos φ1)E∗
m2

(cos φ2), (25)

and construct new basis functions Plm(cos θ) and Em(cos φ) with the orthonormalizations

1
2

∫ π

0
dθ sin θ fz(cos θ)Plm(cos θ)Pl′m(cos θ) = δll′ (26)

for the generalized Legendre functions and

1

2π

∫ 2π

0
dφ fx(cos φ)Em(cos φ)E∗

m′(cos φ) = δmm′ , (27)

again for m, m ′ positive or negative, for the generalized exponential functions. More
specifically, for the latter we have

Em(cos φ) = Tm(cos φ) + iVm(cos φ), (28)

where the generalized Chebyshev functions satisfy
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1

2π

∫ 2π

0
dφ fx(cos φ)Tm(cos φ)Tm′ (cos φ) =






1, m = m ′ = 0

1/2, m = m ′ > 0

0, m �= m ′
(29)

1

2π

∫ 2π

0
dφ fx(cos φ)Vm(cos φ)Vm′(cos φ) =






0, m = m ′ = 0

1/2, m = m ′ > 0

0, m �= m ′
(30)

1

2π

∫ 2π

0
dφ fx(cos φ)Tm(cos φ)Vm′(cos φ) = 0, (31)

for m, m ′ � 0. The generalized spherical harmonics introduced above follow the Condon–
Shortley phase convention usually chosen for the standard set [21], which results in the
definitions

Ylm(ω) = (−1)m

√
4π

Plm(cos θ)Em(cos φ),

Ylm̄(ω) = 1√
4π

Plm(cos θ)E∗
m(cos φ)

(32)

for m � 0. They are orthonormal with weight function f (ω) = fz(cos θ) fx(cos φ),∫
dω f (ω)Ylm(ω)Y∗

l′m′(ω) = δll′δmm′ . (33)

Construction of the generalized Legendre functions has been previously described [17]. The
generalized Chebyshev functions needed are given explicitly in the appendix.

Keeping all terms in these expansions up to l1 = l2 = |m1| = |m2| = maxM requires
1, 9, 39, 118, . . . distinct coefficients for maxM = 0, 2, 4, 6, . . . respectively. The results
reported below are for maxM = 4 using 39 distinct coefficients; essentially identical results
are obtained with maxM = 2 using just nine distinct coefficients.

Applied to the pair potential u(r, ω1, ω2), the expansion in equation (25) becomes

u(r, ω1, ω2) = −4π K u0(r)
∑

l1,l2,m1,m2

Pm1m2
l1 l2

Yl1m1(ω1)Yl2 m̄2(ω2), (34)

with nine distinct nonvanishing coefficients in the general case:

P00
00 = 1

4 (3m2 − 1)2 + 3
4µ2

2(1 − m2)
2, (35)

P00
20 = P00

02 = 3
4 [(3m2 − 1) − µ2

2(1 − m2)](m4 − m2
2)

1/2, (36)

P20
20 = P02

02 = 3
8µ2(1 − 2µ2

2 + µ4)
1/2(1 − m2)(1 − 2m2 + m4)

1/2, (37)

P00
22 = 3

4 (3 + µ2
2)(m4 − m2

2), (38)

P20
22 = P02

22 = − 3
8µ2(1 − 2µ2

2 + µ4)
1/2(m4 − m2

2)
1/2(1 − 2m2 + m4)

1/2, (39)

P11
22 = − 3

2 (m2 − m4), (40)

P1−1
22 = − 3

2 µ2(m2 − m4), (41)

P22
22 = 3

8 (1 − µ2
2)(1 − 2m2 + m4), (42)

P2−2
22 = 3

8 (µ4 − µ2
2)(1 − 2m2 + m4). (43)

Here mk = 〈(cos θ)k〉 is the kth moment of f z(cos θ) and µk = 〈cos kφ〉 the kth pseudomoment
of fx(cos φ). If the orienting field along the x axis is turned off, then µ2 = µ4 = 0 and the set
reduces to five distinct nonvanishing coefficients [12]; if further the disorienting field along
the z axis is also turned off, then m2 = 1/3, m4 = 1/5, and just three contributions remain,
P00

22 = −P11
22 = P22

22 = 1/5.
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3.3. Ornstein–Zernike equation

The OZ equation (19) is more conveniently used after deconvolution by Fourier transformation,
which yields

γ̃ (k, ω1, ω2) = ρ

4π

∫
dω3 f (ω3)[γ̃ (k, ω1, ω3) + c̃(k, ω1, ω3)]c̃(k, ω3, ω2), (44)

with a final integration still remaining. Because the orientations of the molecular axes ω1, ω2

and that of r12 are decoupled in the present model, the transforms may be performed holding
the former fixed. In two dimensions, the Fourier transform (FT) of a circularly symmetric
function becomes a Hankel transform, and so we get a transform pair

γ̃ (k, ω1, ω2) = 2π

∫ ∞

0
dr rγ (r, ω1, ω2)J0(kr), (45)

γ (r, ω1, ω2) = 1

2π

∫ ∞

0
dk kγ̃ (k, ω1, ω2)J0(kr), (46)

where J0(x) is the Bessel function of order zero. The transformed functions are then expanded
just as in equation (25),

γ̃ (k, ω1, ω2) = 4π
∑

l1,l2,m1,m2

γ̃
m1m2
l1l2

(k)Yl1m1(ω1)Yl2 m̄2(ω2) (47)

and similarly for c̃(k, ω1, ω2), and the final integration in equation (44) is carried out to give
a matrix equation,

γ̃
m1m2
l1l2

(k) = ρ
∑

l3,m3

(−1)m3
[
γ̃

m1m3
l1l3

(k) + c̃m1m3
l1l3

(k)
]

c̃m3m2
l3l2

(k), (48)

or

∑

l3,m3

γ̃
m1m3
l1l3

(k)
[
δl3l2 δm3m2 − (−1)m3ρc̃m3m2

l3l2
(k)
] = ρ

∑

l3,m3

(−1)m3 c̃m1m3
l1l3

(k)c̃m3m2
l3l2

(k), (49)

which can be solved by matrix manipulations for the γ̃
m1m2
l1l2

(k) in terms of the c̃m1m2
l1l2

(k). One
cycle of the iterative (numerical) solution that yields a converged set of coefficients {γ m1m2

l1l2
(r)}

will then consist of four steps:

{γ m1m2
l1l2

(r)} closure−→ {cm1m2
l1l2

(r)} (FT)−→ {c̃m1m2
l1l2

(k)} OZ−→ {γ̃ m1m2
l1l2

(k)} (FT)−1−→ {γ m1m2
l1l2

(r)}. (50)

Keeping terms up to order two in the expansions, which captures the essential properties
of the system, we note that the coefficients

Cm1m2
l1 l2

(k) ≡ δl1l2δm1m2 − (−1)m1ρc̃m1m2
l1 l2

(k) (51)

form a symmetric 6 × 6 matrix,
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C(k) =




1 − ρc̃00
00(k) −ρc̃20

20(k) 0

−ρc̃20
20(k) 1 − ρc̃22

22(k) 0

0 0 1 + ρc̃11
22(k)

−ρc̃00
20(k) −ρc̃20

22(k) 0

0 0 1 + ρc̃1−1
22 (k)

−ρc̃20
20(k) −ρc̃2−2

22 (k) 0

−ρc̃00
20(k) 0 −ρc̃20

20(k)

−ρc̃20
22(k) 0 −ρc̃2−2

22 (k)

0 ρc̃1−1
22 (k) 0

1 − ρc̃00
22(k) 0 −ρc̃20

22(k)

0 1 + ρc̃11
22(k) 0

−ρc̃20
22(k) 0 1 − ρc̃22

22(k)





, (52)

where the symmetries c̃m1m2
l1l2

(k) = c̃m̄1m̄2
l1l2

(k) = c̃m2m1
l2l1

(k) have been used to reduce the number
of distinct coefficients to nine. For the general case with W0 > 0 and A0 > 0, all of the
transforms displayed above are nonzero. A simple program in Mathematica can factor the
characteristic polynomial of this matrix and analytically extract three eigenvalues,

λ1(k) = 1 + ρc̃11
22(k) − ρc̃1−1

22 (k), (53)

λ2(k) = 1 + ρc̃11
22(k) + ρc̃1−1

22 (k), (54)

λ3(k) = 1 − ρc̃22
22(k) + ρc̃2−2

22 (k). (55)

Similarly, the inverse matrix

H(k) = [C(k)]−1, (56)

with elements

H m1m2
l1l2

(k) ≡ δl1l2δm1m2 + (−1)m1ρh̃m1m2
l1 l2

(k), (57)

is analytically evaluated to yield

ν1(k) ≡ 1 − ρh̃11
22(k) + ρh̃1−1

22 (k) = [1 + ρc̃11
22(k) − ρc̃1−1

22 (k)]−1 = λ−1
1 (k), (58)

ν2(k) ≡ 1 − ρh̃11
22(k) − ρh̃1−1

22 (k) = [1 + ρc̃11
22(k) + ρc̃1−1

22 (k)]−1 = λ−1
2 (k), (59)

ν3(k) ≡ 1 + ρh̃22
22(k) − ρh̃2−2

22 (k) = [1 − ρc̃22
22(k) + ρc̃2−2

22 (k)]−1 = λ−1
3 (k). (60)

It should be noted that these remarkably simple expressions hold only when the specially
tailored functions Plm(cos θ) and Em(cos φ) are used as bases for the spherical harmonic
expansions. The usual bases of Legendre functions Plm(cos θ) and exponentials Em(cos φ)

would produce hopelessly entangled coefficients.
The Hankel transforms needed in these calculations must be evaluated numerically. The

discrete versions [22, 23] of the integrals (45) and (46) used in this work,

f̃ (k j) = 4π

K 2

Nr −1∑

i=1

f (ri )
J0(k jri )

J 2
1 (Kri )

, (61)

f (ri ) = 1

π R2

Nr −1∑

j=1

f̃ (k j)
J0(k jri )

J 2
1 (k j R)

, (62)
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preserve the orthogonality of the continuous Hankel transforms. In these expressions, Jn(x) is
the Bessel function of order n and the numerical grids are defined by ri = xi/K , k j = x j/R,
where xk is the kth root of J0(x) and K ≡ kNr , R ≡ rNr ; the range R and number of grid
points Nr are free choices. In the calculations reported below, we have used R = 20σ and
Nr = 1000.

3.4. KBGY equations for f (ω) = fz(cos θ) fx(cos φ)

The iterative solution for γ (r12, ω1, ω2) described in the previous section depends on the
current form of the angular distribution function f (ω) = fz(cos θ) fx(cos φ), as reflected in
the pair potential coefficients Pm1m2

l1 l2
, equations (35)–(43); now f (ω) must be updated through

equations (17) and (18) using the new pair function

g(r, ω1, ω2) = exp[−βuHS(r) − βu(r, ω1, ω2) + γ (r, ω1, ω2) + b(r, ω1, ω2)] (63)

and the pair potential u(r12, ω1, ω2).
Expanding g(r12, ω1, ω2) and u(r12, ω1, ω2) in the generalized spherical harmonics and

integrating out the φ dependence, we get for the KBGY relation in θ , equation (17),

d

dθ
ln

[
fz(cos θ)

f0z(cos θ)

]
= −

∑

l1,l2,m

ξmm
l1l2 Pl1 m(cos θ)

d

dθ
Pl2 m(cos θ), (64)

where

ξ
m1m2
l1 l2

≡ ρ

∫
dr
∑

l3m3

gm1m3
l1l3

(r)βum3m2
l3l2

(r). (65)

The actual nonzero potential coefficients restrict (l2, m) in the sum of equation (64) to the set
(0, 0), (2, 0), (2, 1), (2, 2). This equation can then be integrated to give

ln fz(cos θ) = ln f0z(cos θ) − Fz(cos θ) + constant, (66)

Fz(x) = ξ00
02 P20(x) + 1

2ξ00
22 P2

20(x) + ξ11
22P2

21(x) + ξ22
22 P2

22(x) + · · · . (67)

Coefficients ξ
m1m2
l1l2

with indices l j � 4 in the ellipsis will be neglected. The new distribution
function fz(cos θ) is finally found as

ln fz(cos θ) = ln f0z(x) −
∑

l�1

alPl0(cos θ) + constant, (68)

al = 1
2

∫ π

0
dθ sin θ fz(cos θ)Fz(cos θ)Pl0(cos θ). (69)

Odd coefficients a1, a3, . . . vanish. Further, we find that for the thermodynamic states
considered in this work the coefficient a4 is at least two orders of magnitude smaller than
a2, so that, keeping only a2, fz(cos θ) retains the form of f0z(cos θ),

ln fz(cos θ) = − 3
2βW cos2 θ + constant, (70)

with an interaction-altered field strength

W = W0 +
2a2

3β(m4 − m2
2)

1/2
. (71)

The constant in equation (70) is determined by normalization (see equation (10)); integrals (69)
are evaluated numerically and exactly using Gaussian quadrature,

al =
n∑

j=1

w(x j )Fz(x j)Pl0(x j), (72)
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with l < n, where the x j are the n zeros of Pn0(x) and w(x j ) the corresponding Gaussian
weights. These quantities, along with the generalized Legendre functions themselves, are
calculated using a robust algorithm proposed by Press and Teukolsky [24]. All Gaussian
quadratures in the calculation were carried out using n = 10 Gaussian root points.

Calculation of fx(cos φ) from the KBGY relation in φ, equation (18), runs along similar
lines. Again expanding the pair functions in generalized spherical harmonics and now
integrating out the θ dependence, we arrive finally at

ln fx(cos φ) = ln f0x (cos φ) − Fx(cos φ) + constant, (73)

Fx(y) = ξ02
02 〈P22(x)〉 [E2(y) + E∗

2 (y)] + ξ02
22 〈P20(x)P22(x)〉 [E2(y) + E∗

2 (y)] + ξ11
22 |E1(y)|2

+ 1
2ξ1−1

22 [E2
1 (y) + E∗2

1 (y)] + ξ22
22 |E2(y)|2 + 1

2 ξ2−2
22 [E2

2 (y) + E∗2
2 (y)] + · · · , (74)

and again coefficients ξ
m1m2
l1 l2

with indices l j � 4 in the ellipsis will be neglected. The
averaged quantities in equation (74) are 〈P22(x)〉 = (1 − m2)/(1 − 2m2 + m4)

1/2 and
〈P20(x)P22(x)〉 = −[(m4 − m2

2)/(1 − 2m2 + m4)]1/2. The new distribution function fx(cos φ)

is then found as

ln fx(cos φ) = ln f0x (cos φ) −
∑

m

bmEm(cos φ) + constant, (75)

bm = 1

2π

∫ 2π

0
dφ fx(cos φ)Fx(cos φ)E∗

m(cos φ). (76)

Odd coefficients b1, b3, . . ., vanish and, again in practice, we find that for the states considered
herein the coefficient b2 is at least two orders of magnitude larger than b4, so that fx(cos φ)

also effectively retains the form of f0x (cos φ),

ln fx(cos φ) = β A cos 2φ + constant, (77)

but with an interaction-altered field strength

A = A0 − 2b2

β(1 − 2µ2
2 + µ4)1/2

. (78)

The constant in equation (77) is determined by normalization (see equation (11)); integrals (76)
are evaluated numerically and exactly using 10-point Gaussian quadrature.

Successive rounds of iterations for γ (r12, ω1, ω2) and f (ω) = fz(cos θ) fx(cos φ) are
repeated until both functions are self-consistently converged.

4. Thermodynamics and structure

Once the one-body and two-body distribution functions have been determined, it is
straightforward to calculate the various thermodynamic quantities. For instance, the excess
internal energy U and the pressure p are found as quadratures,

βU

N
= 1

2
ρ

∫
dr

∑

l1,l2 ,m1,m2

gm1m2
l1l2

(r)βum1m2
l1l2

(r), (79)

βp

ρ
= 1 +

1

2
πρσ 2g00

00(σ ) − 1

4
ρ

∫
dr

∑

l1,l2 ,m1,m2

gm1m2
l1l2

(r)r
d

dr
βum1m2

l1l2
(r), (80)

in terms of the coefficients of the expansions of the pair distribution function and the potential
function in generalized spherical harmonics, while the isothermal compressibility χT is given
by

ρkBT χT = 1 + ρh̃00
00(0), (81)
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where h = g − 1. The thermodynamic integrals above were evaluated with the trapezoidal
rule for unequal intervals at the points defined by the Hankel transform operations.

The response of the system to the external fields is described by the ‘polarizations’

Mz = 1

β

∂ ln Z

∂W0
= −1

2
N(3m2 − 1), (82)

Mx = 1

β

∂ ln Z

∂ A0
= Nµ2. (83)

The susceptibilities are then

χzz = 1

A

∂Mz

∂W0
, χxx = 1

A

∂Mx

∂ A0
, χxz = χzx = 1

A

∂Mx

∂W0
. (84)

We find for these

χzz/βρ = 1
4 (3m2 − 1)2[1 + ρh̃00

00(0)] + 3
2 (3m2 − 1)(m4 − m2

2)
1/2ρh̃00

20(0)

+ 9
4 (m4 − m2

2)[1 + ρh̃00
22(0)], (85)

χxx/βρ = µ2
2[1 + ρh̃00

00(0)] + 2µ2(1 − 2µ2
2 + µ4)

1/2〈P22(x)〉ρh̃20
20(0)

+ 1
2 (1 − 2µ2

2 + µ4){1 + 〈P22(x)〉2 [ρh̃22
22(0) + ρh̃2−2

22 (0)]} + · · · , (86)

−χxz/βρ = 1
2µ2(3m2 − 1)[1 + ρh̃00

00(0)] + 3
2µ2(m4 − m2

2)
1/2ρh̃00

20(0)

+ (1 − 2µ2
2 + µ4)

1/2〈P22(x)〉[(3m2 − 1)ρh̃20
20(0)

+ 3(m4 − m2
2)

1/2ρh̃20
22(0)] + · · · , (87)

where the terms in the ellipses will be neglected.
The structure of the liquid is succinctly described by the angle-averaged distribution

functions

Gl(r) = (2l + 1)〈g(r, ω1, ω2)Pl(cos θ12)〉ω1ω2

≡ 2l + 1

(4π)2

∫
dω1 ω2 f (ω1) f (ω2)g(r, ω1, ω2)Pl(cos θ12). (88)

Key among these are

G0(r) = g00
00(r), (89)

which is a measure of the relative density of particles at centre-to-centre distance r about a
central particle, and

G2(r) = 5
∑

l1,l2,m1,m2

gm1m2
l1l2

(r)Pm1m2
l1l2

, (90)

which is a measure of the average relative orientation between two fluid particles at centre-
to-centre distance r . The external fields induce long-range orientational order, so that for
large r ,

G2(r) ∼ 5P00
00 = 5

4 (3m2 − 1)2 + 15
4 µ2

2(1 − m2)
2. (91)

In the limit of zero fields (W0 = A0 = 0), G2(r) becomes the usual rotational-invariant
coefficient g220(r),

G2(r)�W0=A0=0 = g220(r) = g00
22(r) − 2g11

22(r) + 2g22
22(r), (92)

and goes asymptotically to zero.
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5. Monte Carlo simulation and order parameters

The simulation method to be applied depends on the phase behaviour that is expected in each
of the cases. We consider systems with W0 = A0 = 0 and W0 �= 0, A0 = 0 along with
systems in which both external fields are nonzero. The first two regimes, with A0 = 0, will
exhibit an orientational order–disorder phase transition, while in the third the presence of both
fields removes the transition by inducing orientational order at all temperatures. (Obviously,
a condensation transition might still be possible depending on the range of the interaction, but
that is outside the scope of this study.) We have then two distinct situations, one in which
we have to deal with criticality and another in which we expect the system to behave like an
ordinary homogeneous and isotropic bulk fluid. In the latter case (i.e., when both fields are
nonzero) we use the usual Monte Carlo algorithm without further elaboration. But in the cases
where A0 = 0 one can encounter critical slowing down at low temperatures and therefore, in
order to improve the orientational sampling, here we apply a combination of cluster and single-
particle moves. The cluster algorithm used was developed following the ideas of Swendsen
and Wang [25] and can be found in full detail in [26] applied to an off-lattice Heisenberg
system. For the single-particle moves we have devised an algorithm which guarantees that
each and every particle move is accepted [27].

The course of a Monte Carlo simulation can then be sketched as follows. The set of
particle moves is organized in sweeps. Each Monte Carlo sweep for a system of N particles
consists of N translational moves performed according to a standard Monte Carlo algorithm,
followed by either N orientational moves or one cluster move—the type of move alternating
with successive sweeps. For the systems studied here, we have carried out a total of 104 sweeps
during equilibration and 105 sweeps in the production run in samples with 900 particles. As
mentioned earlier, when both fields are nonzero we use a standard Monte Carlo algorithm
which combines rotational and translational moves, again generating 104 configurations during
equilibration and 105 configurations to calculate the ensemble averages.

Finally, a few words regarding the calculation of the order parameters. In the integral
equation formalism we can directly evaluate the moments m2 and µ2, which immediately
yield the usual nematic order parameters 〈P2(cos θ)〉 = (3m2 − 1)/2 and 〈T2(cos φ)〉 = µ2.
The coordinate frame for the angles is defined by W0 (z axis) and A0 (x axis). When one
or both fields are turned off the equations will ‘remember’ their direction if the iterations are
started from an ordered solution obtained in nonzero field.

Similarly, in a simulation when both W0 and A0 are nonzero we can directly calculate the
MC averages

〈P2(cos θ)〉 = 1

2N

N∑

i=1

〈3sz
i sz

i − 1〉MC, (93)

〈T2(cos φ)〉 = 1

N

N∑

i=1

〈2ux
i ux

i − 1〉MC, (94)

where û ≡ (sx , sy)/[(sx)2 + (sy)2]1/2 is a unit vector in the system plane. When A0 = 0
however there is no longer a special direction in the system plane and equation (94) will
average to zero regardless of system ordering. Here we use instead a two-dimensional version
of Saupe’s tensor [28],

Q2D
αβ = 1

N

N∑

i=1

〈2uα
i uβ

i − δαβ〉MC, with α, β = x, y, (95)

whose largest eigenvalue gives the order parameter S2D. It is easy to recognize that S2D = µ2.



2814 F Lado et al

Finally, when W0 = 0 then equation (93) will average to zero, again regardless of system
ordering, even though in this case the z axis continues to be uniquely defined as the normal
to the system plane. But because the Maier–Saupe potential we are using decouples the axial
orientations ω from the in-plane vectors r, the orientations ω now see no special direction in
space. An orientational quantity that can still be calculated by simulation in these circumstances
is the Kerr constant, GK = 〈P2(cos θ12)〉, where cos θ12 = ŝ1 · ŝ2. We have then that

GK ≡ P00
00 = 1

4 (3m2 − 1)2 + 3
4µ2

2(1 − m2)
2 (96)

= 〈P2(cos θ)〉2 + 1
3µ2

2(1 − 〈P2(cos θ)〉)2, (97)

which can be inverted to give

〈P2(cos θ)〉 = − [9GK + 3µ2
2(GK − 1)]1/2 − µ2

2

3 + µ2
2

, (98)

where both GK and µ2 are known from simulation. When W0 �= 0, equations (98) and (93) are
equivalent; calculating both serves as an internal check. Similarly, when A0 �= 0 the method
using equation (95) is equivalent to equation (94) and both can be calculated to check internal
consistency.

We note in passing that GK is also connected with the largest eigenvalue of the three-
dimensional Saupe tensor [28],

Q3D
αβ = 1

2N

N∑

i=1

〈3uα
i uβ

i − δαβ〉MC, with α, β = x, y, z, (99)

known in simulation as the order parameter S, by the simple relation GK = S2. With this and
equation (91), one recovers the relation [29]

lim
r→∞ G2(r) = 5GK = 5S2, (100)

which is known to be fulfilled in phases with long-range nematic order.

6. Results

We report here sample results obtained from the integral equations using two different closures,
RHNC and MSA, and from Monte Carlo (MC) simulations for the planar system at reduced
density ρσ 2 = 0.8, reduced range parameter κσ = 1.0, and a spread of reduced temperatures
T ∗.

In the RHNC closure, the bridge function b(r, ω1, ω2) needed in equation (20) is
approximated by the known bridge function of some selected reference system, generally
a hard core model. For the two-dimensional fluid treated here, we take as reference system a
hard disc (HD) fluid at the same density, and put

b(r, ω1, ω2) ≈ bHD(r). (101)

There is no parameterized solution known for the hard disc fluid that maintains internal
thermodynamic consistency, and so to get bHD(r) we resort to an approximate closure for
this model that achieves at least pressure consistency [22], namely

cHD(r) = hHD(r) − (1 − µ)[gHD(r)eβuHD(r) − 1] − µ ln[gHD(r)eβuHD(r)]. (102)

This is a blend of the familiar Percus–Yevick (µ = 0) and hypernetted chain (µ = 1) closures
controlled by the parameter µ to achieve consistency of the virial and compressibility pressures.
The density dependence of µ constrained in this way is found by calculation to be fitted by

µ = 0.0920 + 0.1222(ρσ 2) + 0.1642(ρσ 2)2 + 0.1100(ρσ 2)3. (103)
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Figure 1. Excess internal energy from the RHNC integral equation (lines) and MC simulation
(points) for a planar nematic liquid at ρσ 2 = 0.8 with κσ = 1.0 and three external field
combinations W0, A0 as shown in the legend box.

A better approximation for b(r, ω1, ω2) would include anisotropy with at least a P2(cos θ12)

term, as in the pair potential, but essentially nothing is known about such generalized bridge
functions.

The MSA is concisely expressed by a pair of equations,

g(r, ω1, ω2) = 0, r < σ, (104)

c(r, ω1, ω2) = −βu(r, ω1, ω2), r > σ. (105)

The first of these is of course exact; the approximation is in the second equation, which, by
linearizing equation (20), enormously reduces the computing time for the iteration cycle in (50)
compared to RHNC.

Table 1 summarizes the principal thermodynamic data obtained with the RHNC closure.
The effective fields W and A define the calculated one-body distribution functions and show
how the tendency of the pair interaction to mutually align molecular axes can multiply the effect
of the external fields on an individual molecule. With decreasing temperature the molecular
axes become more aligned with each other and the system becomes more energetically bound.
This is seen graphically in figure 1, with the excess energy U dropping more and more steeply
as first the disorienting field W0 and then the in-plane orienting field A0 are turned on. The drop
in pressure with temperature in table 1 is steady but not as dramatic as that of U . Comparison
of p and U with MC values in table 1 shows that the present isotropic implementation of
RHNC performs reasonably well but falls short of what is usually attained with this closure in
simple liquids; evidently the orientational part of b(r, ω1, ω2) is not negligible.

The increase in orientational order with decreasing temperature in the presence of both
fields is seen in figure 2; one can readily visualize these lines as T ∗ → 0 extending toward
perfect order, which is −1/2 for 〈P2(cos θ)〉 and +1 for 〈T2(cos φ)〉. Figure 3 displays pair
structure in the planar liquid. The function G0(r) is just the angle-averaged g(r, ω1, ω2) and
changes little across the states in table 1 for the fixed density ρσ 2 = 0.8; we show the specific
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Table 1. Results computed using the RHNC integral equation and MC simulation (900 particles) for a planar nematic liquid at ρσ 2 = 0.8 with κσ = 1.0
and three external field combinations W0, A0. For A0 = 0 states, converged RHNC solutions cannot be obtained appreciably below the lowest listed
temperature.

βp/ρ βU/N 〈P2(cos θ)〉 〈T2(cos φ)〉

T ∗ W0/K W/K A0/K A/K RHNC MC RHNC MC RHNC MC RHNC MC ν1(0) ν2(0) ν3(0)

8.00 0 0 0 0 7.264 7.439(28) −0.0059 −0.0059(01) 0 0 0 0 1.201 1.201 1.201
6.00 0 0 0 0 7.261 7.448(18) −0.0109 −0.0109(02) 0 0 0 0 1.288 1.288 1.288
5.00 0 0 0 0 7.254 7.431(29) −0.0162 −0.0160(02) 0 0 0 0 1.368 1.368 1.368
4.00 0 0 0 0 7.245 7.428(25) −0.0266 −0.0263(02) 0 0 0 0 1.508 1.508 1.508
3.00 0 0 0 0 7.217 7.400(37) −0.0519 −0.0510(04) 0 0 0 0 1.826 1.826 1.826
2.50 0 0 0 0 7.186 7.365(22) −0.0821 −0.0793(05) 0 0 0 0 2.217 2.217 2.217
2.00 0 0 0 0 7.086 7.322(31) −0.1607 −0.1433(05) 0 0 0 0 3.595 3.595 3.595
1.95 0 0 0 0 7.059 7.309(37) −0.1792 −0.1536(08) 0 0 0 0 4.097 4.097 4.097
1.92 0 0 0 0 7.030 7.304(33) −0.1969 −0.1610(10) 0 0 0 0 4.740 4.740 4.740

8.00 1 1.195 0 0 7.264 7.439(26) −0.0063 −0.0062(02) −0.0292 −0.0293 0 0 1.196 1.196 1.211
6.00 1 1.275 0 0 7.259 7.435(30) −0.0119 −0.0117(02) −0.0412 −0.0409 0 0 1.277 1.277 1.309
5.00 1 1.345 0 0 7.253 7.437(33) −0.0180 −0.0178(03) −0.0516 −0.0516 0 0 1.349 1.349 1.404
4.00 1 1.463 0 0 7.240 7.413(27) −0.0306 −0.0302(03) −0.0691 −0.0690 0 0 1.470 1.470 1.581
3.00 1 1.695 0 0 7.202 7.381(29) −0.0640 −0.0629(04) −0.1031 −0.1032 0 0 1.717 1.717 2.042
2.50 1 1.920 0 0 7.151 7.345(22) −0.1075 −0.1048(09) −0.1350 −0.1353 0 0 1.973 1.973 2.736
2.00 1 2.350 0 0 6.987 7.232(31) −0.2300 −0.2097(14) −0.1909 −0.1894 0 0 2.650 2.650 6.358
1.95 1 2.422 0 0 6.941 7.218(36) −0.2584 −0.2284(13) −0.1991 −0.1969 0 0 2.868 2.868 8.051
1.93 1 2.457 0 0 6.913 7.209(26) −0.2742 −0.2373(13) −0.2028 −0.2004 0 0 3.026 3.026 9.370
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Table 1. (Continued.)

βp/ρ βU/N 〈P2(cos θ)〉 〈T2(cos φ)〉

T ∗ W0/K W/K A0/K A/K RHNC MC RHNC MC RHNC MC RHNC MC ν1(0) ν2(0) ν3(0)

8.00 1 1.209 1 1.172 7.263 7.440(34) −0.0071 −0.0068(04) −0.0296 −0.0303 0.0731 0.0756 1.180 1.213 1.211
6.00 1 1.305 1 1.250 7.257 7.432(29) −0.0140 −0.0136(05) −0.0421 −0.0422 0.1036 0.1090 1.243 1.313 1.308
5.00 1 1.395 1 1.322 7.247 7.422(34) −0.0223 −0.0216(07) −0.0535 −0.0538 0.1311 0.1386 1.292 1.409 1.400
4.00 1 1.562 1 1.454 7.226 7.406(42) −0.0411 −0.0400(10) −0.0735 −0.0731 0.1789 0.1908 1.361 1.589 1.571
3.00 1 1.966 1 1.770 7.152 7.328(29) −0.1028 −0.1025(23) −0.1177 −0.1176 0.2829 0.3065 1.442 2.048 1.994
2.50 1 2.471 1 2.159 7.022 7.207(23) −0.2067 −0.2099(37) −0.1666 −0.1661 0.3960 0.4282 1.451 2.660 2.535
2.00 1 3.522 1 2.967 6.617 6.829(27) −0.5201 −0.5161(47) −0.2540 −0.2504 0.5920 0.6118 1.390 4.072 3.686
1.95 1 3.655 1 3.068 6.549 6.769(36) −0.5715 −0.5675(53) −0.2641 −0.2609 0.6138 0.6319 1.383 4.271 3.835
1.90 1 3.788 1 3.172 6.478 6.704(37) −0.6269 −0.6186(53) −0.2742 −0.2706 0.6353 0.6499 1.378 4.480 3.986
1.85 1 3.921 1 3.275 6.400 6.619(25) −0.6862 −0.6781(55) −0.2841 −0.2808 0.6562 0.6707 1.375 4.699 4.137
1.80 1 4.051 1 3.375 6.317 6.549(35) −0.7489 −0.7370(55) −0.2937 −0.2901 0.6761 0.6875 1.373 4.934 4.291
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Figure 2. Order parameters 〈P2(cos θ)〉 and 〈T2(cos φ)〉 from the RHNC integral equation (lines)
and MC simulation (points) for a planar nematic liquid at ρσ 2 = 0.8 with κσ = 1.0 and external
fields W0 = A0 = 1.0.

values at an intermediate temperature, T ∗ = 3. The tendency of near neighbours to align with
each other is seen in G2(r) to be much more sensitive to changes in temperature and external
field.

If any of the eigenvalues λ j (k), equations (53)–(55), should vanish then the matrix OZ
equation would have no inverse and the integral equation no solution. Following the stability
analysis of Chen et al [30, 31], this signals a phase change. We see in figure 4 that λ3(0) indeed
tends towards zero with decreasing temperature if A0 = 0, more rapidly in the presence of
a disorienting field W0. This is consistent with the expectation discussed earlier that the
isotropic–nematic transition occurs at a higher temperature in the presence of a disorienting
field. Note that in zero field λ1(0) = λ2(0) = λ3(0), while with W0 �= 0, A0 = 0 we
have λ1(0) = λ2(0) �= λ3(0). Only with both fields turned on are the three eigenvalues
nondegenerate and in figure 4 the change of slope in λ3(0) in the presence of both fields at low
temperatures indicates that in this case the phase transition has vanished. Figure 5 displays
the eigenvalue inverses ν j (k) = 1/λ j (k), equations (58)–(60); they are relatively featureless,
with significant values only for small k. (Values at k = 0 are in table 1.) The curves shown
are for T ∗ = 2.0 with W0 = 1 and A0 = 0.

The two order parameters show that the states in table 1 with A0 = 1 are highly ordered
at low temperatures. One might hope that using such a low-temperature solution as input for
iterations with A0 = 0 would allow the system to relax into an ordered state that maintained
A > 0. This does not work with the RHNC closure; the iterations do not converge and no
solution is found.

We turn then to the MSA. Table 2 summarizes the principal thermodynamic data obtained
with the MSA closure. Qualitatively the results at higher temperatures are similar to those of
RHNC. Quantitatively the pressure and energy are notably poorer while the order parameters
are remarkably just as good. The principal differences however are seen at lower temperatures.
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Figure 3. Centre-to-centre distribution function G0(r) in zero field and angular projection G2(r)
without and with a disorienting field from the RHNC integral equation (lines) and MC simulation
(symbols) for a planar nematic liquid at ρσ 2 = 0.8 with κσ = 1.0. Values in the legend box
indicate the temperatures T ∗ at which the calculations were performed.

Here we are able to carry out the program suggested above: start iterations for A0 = 0 using the
solutions found for A0 = 1 and allow the system to find its equilibrium value of the effective
A field. (Starting from a solution with any A0 > 0 will work the same. Further, only the
lowest temperature state need be solved in this way; higher temperature cases can then start
from a lower temperature solution with A0 = 0.) We see that indeed the system remains in
an ordered state, with the values of A and 〈T2(cos φ)〉 dropping as temperature rises until a
critical temperature is reached and the system shifts into a disordered state. This happens with
and without a disorienting field W0, but the transition temperature is clearly higher with the
disorienting field.

One important point must be stressed here regarding the order parameters. The reported
simulation values of 〈T2(cos φ)〉 when A0 = 0 and 〈T2(cos φ)〉 and 〈P2(cos θ)〉 when
W0 = A0 = 0 are representative only of the 900-particle samples. As we will show in a
later paper [27], there is a BKT [19, 20] defect-mediated continuous transition without true
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Table 2. Results computed using the MSA integral equation and MC simulation (900 particles) for a planar nematic liquid at ρσ 2 = 0.8 with κσ = 1.0
and three external field combinations W0, A0. Note that the simulation values of 〈P2(cos θ)〉 and 〈T2(cos φ)〉 when A0 = W0 = 0 and those of 〈T2(cos φ)〉
when just A0 = 0 are representative only of the 900-particle sample, since these quantities should vanish in the thermodynamic limit for the quasiordered
states of the BKT phase.

βp/ρ βU/N 〈P2(cos θ)〉 〈T2(cos φ)〉

T ∗ W0/K W/K A0/K A/K MSA MC MSA MC MSA MC MSA MC ν1(0) ν2(0) ν3(0)

8.00 0 0 0 0 6.824 7.439(28) −0.0030 −0.0059(01) 0 0 0 0 1.141 1.141 1.141
6.00 0 0 0 0 6.822 7.448(18) −0.0054 −0.0109(02) 0 0 0 0 1.196 1.196 1.196
5.00 0 0 0 0 6.819 7.431(29) −0.0078 −0.0160(02) 0 0 0 0 1.244 1.244 1.244
4.00 0 0 0 0 6.813 7.428(25) −0.0125 −0.0263(02) 0 0 0 0 1.322 1.322 1.322
3.00 0 0 0 0 6.800 7.400(37) −0.0230 −0.0510(04) 0 0 0 0 1.472 1.472 1.472
2.00 0 0 0 0 6.759 7.322(31) −0.0559 −0.1433(05) 0 0 0 0 1.881 1.881 1.881
1.50 0 0 0 0 6.694 7.072(25) −0.1079 −0.3721(15) 0 −0.080 0 0.083 2.525 2.525 2.525
1.40 0 2.519 0 1.900 5.966 6.907(27) −0.6471 −0.5186(39) −0.257 −0.123 0.559 0.122 1.282 3.330 3.512
1.20 0 3.953 0 3.001 4.936 5.892(24) −1.4116 −1.3215(29) −0.351 −0.404 0.765 0.497 1.116 3.230 3.303
1.00 0 4.603 0 3.479 3.997 4.944(21) −2.1079 −2.0790(18) −0.392 −0.468 0.840 0.635 1.073 3.226 3.269

8.00 1 1.195 0 0 6.824 7.439(26) −0.0033 −0.0062(02) −0.0292 −0.0293 0 0 1.138 1.138 1.148
6.00 1 1.275 0 0 6.820 7.435(30) −0.0063 −0.0117(02) −0.0412 −0.0409 0 0 1.189 1.189 1.210
5.00 1 1.345 0 0 6.816 7.437(33) −0.0096 −0.0178(03) −0.0516 −0.0516 0 0 1.232 1.232 1.267
4.00 1 1.461 0 0 6.807 7.413(27) −0.0165 −0.0302(03) −0.0690 −0.0690 0 0 1.300 1.300 1.364
3.00 1 1.689 0 0 6.784 7.381(29) −0.0348 −0.0629(04) −0.1027 −0.1032 0 0 1.417 1.417 1.578
2.00 1 2.256 0 0 6.679 7.232(31) −0.1149 −0.2097(14) −0.1850 −0.1894 0 0.063 1.639 1.639 2.390
1.70 1 2.583 0 0 6.579 7.059(33) −0.1912 −0.3827(15) −0.2303 −0.2431 0 0.105 1.728 1.728 3.303
1.60 1 3.351 0 1.415 6.249 6.886(28) −0.4360 −0.5001(21) −0.2822 −0.2675 0.404 0.159 1.324 2.193 3.509
1.40 1 4.687 0 2.690 5.427 6.278(22) −1.0452 −0.9953(29) −0.3531 −0.3308 0.684 0.543 1.134 2.375 3.306
1.20 1 5.379 0 3.250 4.696 5.568(30) −1.5873 −1.5686(24) −0.3889 −0.3756 0.786 0.715 1.084 2.424 3.258
1.00 1 5.866 0 3.619 3.825 4.738(32) −2.2344 −2.2341(15) −0.4148 −0.4064 0.847 0.802 1.057 2.460 3.253
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Table 2. (Continued.)

βp/ρ βU/N 〈P2(cos θ)〉 〈T2(cos φ)〉

T ∗ W0/K W/K A0/K A/K MSA MC MSA MC MSA MC MSA MC ν1(0) ν2(0) ν3(0)

8.00 1 1.209 1 1.172 6.823 7.440(34) −0.0041 −0.0068(04) −0.0296 −0.0303 0.0731 0.0756 1.127 1.149 1.148
6.00 1 1.306 1 1.250 6.817 7.432(29) −0.0085 −0.0136(05) −0.0421 −0.0422 0.1036 0.1090 1.167 1.212 1.209
5.00 1 1.397 1 1.323 6.811 7.422(34) −0.0140 −0.0216(07) −0.0535 −0.0538 0.1312 0.1386 1.196 1.269 1.265
4.00 1 1.566 1 1.458 6.794 7.406(42) −0.0272 −0.0400(10) −0.0736 −0.0731 0.1793 0.1908 1.234 1.368 1.360
3.00 1 1.988 1 1.788 6.729 7.328(29) −0.0759 −0.1025(23) −0.1188 −0.1176 0.2856 0.3065 1.264 1.580 1.559
2.00 1 3.769 1 3.142 6.171 6.829(27) −0.4912 −0.5161(47) −0.2650 −0.2504 0.6132 0.6118 1.155 2.103 2.037
1.80 1 4.371 1 3.590 5.856 6.549(35) −0.7257 −0.7370(55) −0.3058 −0.2901 0.6968 0.6875 1.118 2.203 2.123
1.60 1 4.917 1 3.991 5.466 6.208(28) −1.0152 −1.0206(38) −0.3412 −0.3274 0.7644 0.7530 1.089 2.279 2.185
1.40 1 5.381 1 4.330 4.992 5.756(25) −1.3668 −1.3744(37) −0.3710 −0.3600 0.8166 0.8064 1.067 2.238 2.232
1.20 1 5.772 1 4.614 4.088 5.204(25) −1.8092 −1.8201(25) −0.3963 −0.3877 0.8573 0.8484 1.052 2.388 2.271
1.00 1 6.105 1 4.855 3.598 4.476(21) −2.4019 −2.4180(25) −0.4181 −0.4116 0.8899 0.8830 1.039 2.432 2.305
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Figure 4. Eigenvalue λ3(k = 0) from the RHNC integral equation for a planar nematic liquid at
ρσ 2 = 0.8 with κσ = 1.0 and three external field combinations W0, A0 as shown in the legend
box.

Figure 5. Eigenvalue inverses ν1(k) = ν2(k) and ν3(k) from the RHNC integral equation for a
planar nematic liquid at ρσ 2 = 0.8 and T ∗ = 2.0 with κσ = 1.0 and external fields W0 = 1,
A0 = 0.

long-range order (although below the transition temperature the system exhibits a large degree
of local ordering) by which in the thermodynamic limit the order parameters should vanish.
The fact that we encounter values substantially different from zero is a finite-size effect, and
it allows us to monitor the onset of the transition by signalling the build-up of local order.
The size dependence of structural properties is mostly reflected in the long-range behaviour of
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G2(r), controlled by the order parameters through equation (100), which becomes apparent for
distances beyond 10σ . This in turn implies that the size dependence of other thermodynamic
quantities such as the internal energy or the pressure is relatively small and the values of these
quantities reported in table 2 are representative of the infinite system.

Obviously, the comparison with the low-temperature MSA results is conditioned by the
previous discussion. The MSA approximation is known to predict for this system a weak
first-order phase transition [32], by which at sufficiently low temperatures we encounter truly
ordered states with nonvanishing order parameters, as seen in table 2. Thus, a comparison
of MSA with MC results can only be made for those thermodynamic properties with little
size dependence (energy and pressure) and for the approximate location of the transition.
As mentioned earlier, and in agreement with the RHNC prediction, the presence of the
disorienting field raises the MSA transition temperature. The internal energies below the
transition temperature are reproduced with reasonable accuracy while the pressure is somewhat
poor, as should be expected for the MSA. It is also worth mentioning that those order parameters
that reflect the field-induced orientational ordering (i.e., true long-range order) are accurately
reproduced by the theory, which becomes quite apparent when both fields are nonzero.
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Appendix. Generalized Chebyshev functions

The prerequisite for construction of the modified Chebyshev functions is the set of
quasimoments

µk ≡ 1

π

∫ π

0
dφ fx(cos φ) cos kφ. (A.1)

For the distribution

fx (cos φ) = eβ A cos 2φ

I0(β A)
, (A.2)

these are obtained as

µk =
{

Ik/2(β A)/I0(β A), k even,

0, k odd.
(A.3)

In these expressions, In(x) is the modified Bessel function of order n.
Then, in a straightforward application of the Gram–Schmidt method [21], we find for the

first four members (all that are needed in this calculation)

T0(cos φ) = 1,

T1(cos φ) = (cos φ)(1 + µ2)
−1/2,

T2(cos φ) = (cos 2φ − µ2)(1 − 2µ2
2 + µ4)

−1/2,

T3(cos φ) =
(

cos 3φ − µ2 + µ4

1 + µ2
cos φ

)(
1 + µ6 − (µ2 + µ4)

2

1 + µ2

)−1/2

,

T4(cos φ) =
(

cos 4φ − µ2 − 2µ2µ4 + µ6

1 − 2µ2
2 + µ4

cos 2φ +
µ2(µ2 + µ6) − µ4(1 + µ4)

1 − 2µ2
2 + µ4

)

×
(

1 − 2µ2
4 + µ8 − (µ2 − 2µ2µ4 + µ6)

2

1 − 2µ2
2 + µ4

)−1/2

,

(A.4)
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and

V0(cos φ) = 0,

V1(cos φ) = (sin φ)(1 − µ2)
−1/2,

V2(cos φ) = (sin 2φ)(1 − µ4)
−1/2,

V3(cos φ) =
(

sin 3φ − µ2 − µ4

1 − µ2
sin φ

)(
1 − µ6 − (µ2 − µ4)

2

1 − µ2

)−1/2

,

V4(cos φ) =
(

sin 4φ − µ2 − µ6

1 − µ4
sin 2φ

)(
1 − µ8 − (µ2 − µ6)

2

1 − µ4

)−1/2

.

(A.5)
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